他在十九世纪挪威出现,是那时最伟大的数学家之一。他的父亲是挪威克里斯蒂安桑(Kristiansand)主教区芬杜(Findö)小村庄的牧师,全家生活在穷困之中。在1815年,当他进入了奥斯陆的一所天主教学校读书,他的数学才华便显露出来。经他的老师霍尔姆伯(Holmboë)的引导下,他学习了不少当时的名数学家的著作,包括:牛顿(Newton)、欧拉(Euler)、拉格朗日(Lagrange)及高斯(Gauss)等。他不单了解他们的理论,而且可以找出他们一些微小的漏洞。

1820年,阿贝尔的父亲去世,照顾全家七口的重担突然交到他的肩上。虽然如此,1821年阿贝尔透过霍姆彪的补助,仍可进入奥斯陆的大学就读,并於1822年获大学预颁学位,并由霍姆彪资助继续学业。在学校里,他几乎全是自学,同时花大量时间作研究。

隐没天才 1823年当阿贝尔发表第一篇论文后,他朋友便力请挪威政府资助他到德国及法国进修。当等待政府回复时,在1824年他发表了《一元五次方程没有代数一般解》的论文,可望为他带来肯定地位。他把论文寄给当时有名的数学家高斯,可惜高斯错过了这篇论,也不知道这个著名代数难题已被解破。

1825-26年的冬季,他远赴柏林,并认识了克列尔。克列尔是个土木工程师,而且对数学很有热诚,他跟阿贝尔成为很要好的朋友。1826年,在阿贝尔鼓励下,克列尔回创立了一份纯数学和应用数学杂志,其中刊登了阿贝爾在五次方程工作成果,以及其他如方程理论、泛函方程及理论力学等论文。在柏林,这些新的指导使得他继续独立地进行研究工作,並後來前往欧洲不同的地方。

到了巴黎造访當時最顶尖數學家的夏天時,一系列超越函数研究报告完成,這些工作展示出一個代數函數理論,即現稱為「Abel定理」,而這定理也是後期Abel积分及Abel函数之基礎。他在巴黎被冷落對待,但他的努力也是徒然。他离开巴黎前染病,最终只好返回挪威。但欠下的债务和病痛并没有减低他对数学热情,对此期间写下的大量论文主要涉及方程理论与椭圆函数,这些工作奠定椭圆函数论基础,为后人提供极大帮助。此刻,其名字已经响遍所有の 数学中心,每个人都希望为其找到一个适当教授职位。当中的Kreler希望为其找到一个教授职位于柏林大学。但直至死前两天,只能知晓自己未能获得这一机会。一代天才科学家已经逝世,不再见证自己的荣誉与成就。此后荣誉接踵而来,如1830年与Carl Jacobi共同获得法兰西科学院大奖。